

LIMERICK

LONDON

DUBLIN

CONSULTING GI

CS CONSULTING

GROUP

Engineering Services Report Proposed Residential Development Drumlark, Co. Cavan

Client: Drumlark Investments Ltd Job No. D111

February 2024

ENGINEERING SERVICES REPORT PROPOSED RESIDENTIAL DEVELOPMENT, DRUMLARK, CO. CAVAN

TABLE OF CONTENTS

1.0	INTRODUCTION
1.1	Report Overview1
1.2	Site Location
1.3	Site Characteristics
1.4	Ground Conditions
1.5	Proposed Development4
2.0	WATER SUPPLY
2.1	Existing Water Supply
2.2	Proposed Water Supply Design & Calculations
2.3	Irish Water Liaison
2.4	Design Standards9
3.0	FOUL DRAINAGE
3.1	Existing Foul Drainage Infrastructure10
3.2	Proposed Foul Drainage Design & Calculations10
3.3	Irish Water Liaison14
3.4	Design Standards14
4.0	SURFACE WATER MANAGEMENT PLAN
4.1	Existing Surface Water Drainage Infrastructure15

4.2	Proposed Surface Water Drainage Design	15
4.3	Proposed Sustainable Drainage System (SuDS) Design	18
4.4	Works to the Existing Stream	21
5.0	FOUNDATIONS	22

Appendix A: Existing Irish Water & Local Authority Record Plans

Appendix B: Confirmation of Feasibility (CoF) and Statement of Design

Acceptance (SoDA)

Appendix C: Foul Drainage Network Calculations

Appendix D: SW Network Calculations & Modelling Analysis & Attenuation

This Report has been prepared by CS Consulting for the benefit of its Client only. The contents of this Report are shared with interested parties for information only and without any warranty or guarantee, express or implied, as to their accuracy, reliability or completeness. This Report cannot be relied on by any party other than the party who commissioned it.

File Location: Job-D111\B_DOCUMENTS\1.0 Planning\Reports\ESR											
BS 1192 FIELD D111-CSC-ZZ-XX-RP-C-0001											
Job Ref.	Author		Reviewed By	Authorised By	Issue Date	Rev. No.					
D111	LJ		NB	OS	27.02.2024	P3					
D111	111 LJ		LJ		NB	OS	21.02.2024	P2			
D111 LJ			NB	OS	14.07.2023	P1					

1.0 INTRODUCTION

Cronin & Sutton Consulting Engineers (CS Consulting) have been commissioned by Drumlark Investments Ltd to prepare an Engineering Services Report to accompany a planning submission for a proposed 145units Large-scale Residential Development (LRD) at Drumlark, Cavan.

1.1 Report Overview

This report details the following aspects of the proposed development:

- Stormwater Drainage Infrastructure
- Foul Drainage Infrastructure
- Potable Water Infrastructure

In preparing this report, CS Consulting has made reference to the following:

- Cavan County Development Plan 2022–2028;
- Regional Code of Practice For development works, Version 6;
- Irish Water's Code of Practice for Water Infrastructure;
- Irish Water's Code of Practice for Wastewater Infrastructure;
- Local Authority Drainage Records

The Engineering Services Report is to be read in conjunction with the engineering drawings and documents submitted by CS Consulting, and with the various additional information submitted by the other members of the design team, as part of the planning submission.

1.2 Site Location

The proposed development site in located approx. 3kms north from the Cavan Town Centre. The site is located in the administrative jurisdiction of Cavan County Council and has a development site area of circa 4.62ha.

Figure 1 – Location of Proposed Development Site (map data & imagery: EPA, OSM Contributors, Google)

The location of the proposed development site is shown in **Figure 1** above; the indicative extents of the development site, as well as relevant elements of the surrounding road network, are shown in more detail in **Figure 2**.

Figure 2 – Site Extents and elements of surrounding street network (map data & imagery: OSM Contributors, Google)

The subject site is bound by greenfield on all the sides. There are a few existing residential developments to the north-east of the development site.

1.3 Site Characteristics

The subject development is greenfield. There is an existing water course approx. 80m from the eastern boundary of the development site. There is also an existing Ringfort along the north-western boundary of the site. The development site boundary shall have a buffer of 30m from the Ringfort.

1.4 Ground Conditions

A topographical survey of the subject site was carried out. The site currently falls from approx. 89.62 mAOD along north-western boundary of the site to 73.99 mAOD towards north-eastern boundary of the site.

1.5 Proposed Development

The development will consist of the provision of a total of 145no. residential units along with provision of a crèche. Particulars of the development comprise as follows:

- a. Site excavation works to facilitate the proposed development to include excavation and general site preparation works.
- b. The reprofiling of ground levels within the site as required.
- c. The provision of a total of 91no. residential dwellings which will consist of 25no. 2 bed units, 55no. 3 bed units and 11no. 4 bed units. The dwellings range in height from single storey to two storey.
- d. The provision of a total of 54no. duplex apartment units consisting of 15no.1 bed units and 39no. 2bed units. The duplex apartment blocks range in height from two storey to three storey in height.
- e. Provision of a 2 storey creche with associated parking, bicycle and bin storage.
- f. Provision of associated car parking at surface level via a combination of in-curtilage parking for dwellings and via on-street parking for the creche and duplex apartment units.
- g. Provision of electric vehicle charge points with associated site infrastructure ducting to provide charge points for residents throughout the site.
- h. Provision of associated bicycle storage facilities at surface level throughout the site and bin storage facilities
- i. Creation of a new access point from the public road with associated works to include for a connections to the existing public footpath along with provision of a pedestrian crossing point with a raised table.
- j. The provision of a new shared cycleway and footpath to serve the site.
- k. Provision of internal access roads and footpaths and associated works.
- I. Provision of residential communal open space areas to include formal play areas along with all hard and soft landscape works with public

lighting, planting and boundary treatments to include boundary walls, railings & fencing.

- m. Internal site works and attenuation systems which will include for provision of a hydrocarbon and silt interceptor prior to discharge into the surface water network.
- n. All ancillary site development/construction works to facilitate foul, water and service networks for connection to the existing foul, water and ESB networks.

2.0 WATER SUPPLY

2.1 Existing Water Supply

Irish Water Drainage Records indicate an existing 150mm diameter uPVC watermain traversing the site along the eastern boundary. IW Records also indicate an existing 150mm diameter pipe along L1532 approx. 80m east of the development.

2.2 Proposed Water Supply Design & Calculations

The proposed development comprises of 145no. residential units and 342.1 sqm crèche.

It is proposed to take the water supply off the existing watermain of 150mm diameter to the east of the development site along L1532. The proposed watermain connection shall be via 150mm diameter watermain pipe. The existing 150mm diameter watermain pipe traversing the development site shall be connected and diverted to run along the internal road network.

2.2.1 <u>Residential Units Water Demand</u>

The Irish Water Code of Practice for Water Infrastructure specifies an average potable water demand of 150 litres per person per day for domestic dwellings, and an average occupancy of 2.7 persons per residential unit. The development's applicable design population is therefore 392 people, and the average potable water demand of the proposed development may be calculated as:

- \Rightarrow 150 l/person/day.
- \Rightarrow <u>Average water demand</u>

150 I/day x 392 people = 58,800 I/person/day = 0.680 I/sec

\Rightarrow <u>Peak water demand (5 times average water demand)</u>

5 x 0.680 l/sec = 3.402 l/sec.

2.2.2 Crèche Water Demand

The Irish Water Code of Practice for Water Infrastructure does not specify potable water consumption rates for non-domestic uses; therefore, the water demand is assumed to be 150l/person/day. Taking into consideration the size of the creche, it is assumed that a maximum of 30no. people shall be present on a daily basis. Therefore, the potable water demand for the creche may be calculated as:

- \Rightarrow 150 l/person/day.
- \Rightarrow <u>Average water demand</u>

150 I/day x 30 people = 4500 I/person/day = 0.052 I/sec

 \Rightarrow Peak water demand (5 times average water demand)

5 x 0.052 l/sec = 0.260 l/sec.

- 2.2.3 Total Potable Water Demand by the Proposed Development
 - Average Demand = 0.680 l/s + 0.052 l/s = 0.732 l/s
 - Peak Demand = 3.402 l/s + 0.260 l/s = 3.662 l/s.

The watermain network for the development shall be in accordance with the Building Regulations and to the requirements and specifications of Irish Water.

Please refer to CS Consulting Drawing D111-CSC-XX-XX-DR-C-0003 for the watermain layout for the proposed development.

2.3 Irish Water Liaison

A Pre-Connection Enquiry (PCE) was submitted to Irish Water for the proposed development. As a response to the PCE, a confirmation of Feasibility (CoF) was issued by Irish Water which states a water connection is feasible without infrastructural upgrades. However, it was noted that;

'Please note that according to our records there is an existing water main running through this site (see drawing attached).

Any structures or works over or in close proximity to Irish Water infrastructure that will inhibit access for maintenance or endanger structural or functional integrity of the infrastructure are not allowed.

The layout of the development must ensure that this pipe is protected and adequate separation distances are provided between Irish Water infrastructure and any structures on site. Alternatively you may enter into a diversion agreement with Irish Water and divert the pipe to accommodate your development. If you wish to proceed with this option please contact Irish Water at Diversions@water.ie and submit detailed design drawings before submitting your planning application. It will be necessary to provide a wayleave over this pipe to the benefit of Irish Water and ensure that it is accessible for maintenance. For more information, please see go to the link below: https://www.water.ie/connections/developer-services/diversions.'

It is proposed to divert the existing watermain running within the site. A formal diversion agreement shall be submitted to Irish Water subject to planning. See **Appendix B** to this report for a copy of Confirmation of Feasibility (CoF) also included in **Appendix B** is the Statement of Design Acceptance (SoDA) by Irish Water.

2.4 Design Standards

- Irish Water Code of Practice for Water Infrastructure.
- Building Regulations.

3.0 FOUL DRAINAGE

3.1 Existing Foul Drainage Infrastructure

Irish Water Drainage Records indicate an existing 225mm diameter uPVC combined sewer along L1532 to the east of the development site.

A utility survey was carried out in and around the subject site. The survey results do not show any foul sewer in the close proximity of the development site.

3.2 Proposed Foul Drainage Design & Calculations

The proposed development shall require a new separate foul drainage system to collect and convey the effluent generated by the proposed buildings. The drainage network for the proposed development has been designed in accordance with:

- The Regional Code of Practice Drainage Works,
- The Greater Dublin Strategic Drainage Study,
- Irish Water Code of Practice for Wastewater Infrastructure.

The drainage network for the development shall be in accordance with Part H of the Building Regulations and to the requirements and specifications set out in the Irish Water Code of Practice for Wastewater.

The proposed development comprises of 145no. residential units and 342.1 sqm crèche.

The foul effluent generated by the proposed development site is divided into two catchment areas.

Catchment 1 includes the north and west section of houses. All the foul effluent generated within this catchment area shall discharge into existing

combined sewer running along L1532. The foul effluent shall be collected in separate foul pipes and flow under gravity via a new connection.

Catchment 2 includes the small group of houses and the creche along the south and south-eastern part of the development site. All the foul effluent generated within this catchment area shall discharge into the existing combined sewer along L1532 to the south-east. The foul effluent shall be collected in separate foul pipes and flow under gravity via a new connection.

See Figure 3 below for Foul Catchment extents.

Figure 3 – Proposed Foul Catchments (map data & imagery: OSM Contributors, Google, QGIS)

3.2.1 Foul Effluent generated by the Residential Units

The Irish Water Code of Practice for Wastewater Infrastructure specifies an average foul effluent flow rate of 165 litres per person per day for domestic dwellings (150 litres per person per day, plus a 10% allowance for external infiltration) and an average occupancy of 2.7 persons per residential unit. The development's applicable design

population is therefore 392 people, and the foul effluent to be generated by the proposed residential units may be calculated as:

- \Rightarrow 165 l/person/day.
- \Rightarrow <u>Dry Weather Flow (DWF)</u>

165 I/day x 392 people = 64,680 I/person/day = 0.748 I/sec

 \Rightarrow <u>Peak Flow (6 times DWF)</u>

6 x 0.748 l/sec = 4.491 l/sec.

3.2.2 Foul Effluent generated by the Crèche

The Irish Water Code of Practice for Wastewater Infrastructure specifies an average foul effluent flow rate of 50 litres per person per day for School without Canteen. Taking into consideration the size of the creche, it is assumed that a maximum of 30no. people shall be present on a daily basis. Therefore, the foul effluent generated by the creche may be calculated as:

- \Rightarrow 50 l/person/day.
- \Rightarrow <u>Dry Weather Flow (DWF)</u>

50 l/day x 30 people = 1500 l/person/day = 0.017 l/sec

 \Rightarrow <u>Peak Flow (6 times DWF)</u>

6 x 0.017 l/sec = 0.102 l/sec.

- 3.2.3 Total Foul Effluent generated by the Proposed Development
 - Average Flow = 0.748 l/s + 0.017 l/s = 0.765 l/s
 - Peak Flow = 4.491 l/s + 0.102 l/s = 4.593 l/s

Please refer to CS Consulting Drawing D111-CSC-XX-XX-DR-C-0002 for the watermain layout for the proposed development and Appendix C for Foul Drainage Calculations.

3.3 Irish Water Liaison

A Pre-Connection Enquiry (PCE) was submitted to Irish Water for the proposed development. As a response to the PCE, a confirmation of Feasibility (CoF) was issued by the Irish Water and was noted that wastewater connection is feasible without infrastructure upgrades. See **Appendix B** of this report also included in **Appendix B** is the Statement of Design Acceptance (SoDA) by Irish Water.

3.4 Design Standards

- Irish Water Code of Practice for Wastewater Infrastructure.
- Part H of the Building Regulations.

4.0 SURFACE WATER MANAGEMENT PLAN

4.1 Existing Surface Water Drainage Infrastructure

There is an existing watercourse ditches to the west of the development site. This watercourse serves the existing residential estates.

A utility survey was carried out by Apex Surveyors in and around the subject site. The survey results indicate an existing storm sewer of 225mm diameter along L1532 to the east of the development site. The survey also indicates that an existing 150mm diameter storm sewer traverses the development site along the eastern boundary. Please refer to CS Consulting drawing no. **D111-CSC-XX-XX-DR-C-0021** for the utility survey.

4.2 Proposed Surface Water Drainage Design

4.2.1 <u>Proposed surface water drainage layout and connection points</u>

The proposed development comprises two principal catchments for the collection and disposal of stormwater runoff from impermeable areas:

- Catchment 1 of 2.37ha, includes the north and western sections of the development site, and all the storm water from this Catchment Area shall discharge into existing ditch running adjacent to L1532.
- Catchment 2 of 1.19ha, includes the southern and southeastern section of the development site, and the storm water from this catchment area shall discharge into the existing ditch running adjacent to L1532.

Figure 4 – Proposed Storm Catchments (map data & imagery: OSM Contributors, Google, QGIS)

Refer to **Figure 4** for Storm Catchment extents and CS Consulting drawings **D111-CSC-XX-XX-DR-C-0002** for full details of the development's proposed stormwater drainage arrangements.

4.2.2 Summary of Compliance with Criteria 1-4 of GDSDS

The GDSDS and the Regional Code of Practice for Drainage Works require that a development's stormwater drainage arrangements satisfy four main criteria:

- Criterion 1: River Water Quality Protection satisfied by treatment of run-off within SuDS features, e.g., Swales, Bioretention, Green Roofs etc.
- Criterion 2: River Regime Protection satisfied by attenuating runoff from the site.
- Criterion 3: Level of Service (flooding) for the site satisfied by the site being outside the 1000-year coastal and fluvial flood extent areas.
- Criterion 4: River Flood Protection attenuation and/or long-term storage provided within the SuDS features.

In accordance with the requirements of Cavan County Council, the proposed development shall incorporate Sustainable Drainage Systems (SuDS) features. These serve a dual purpose in managing stormwater within new developments.

4.2.3 <u>Stormwater discharge attenuation</u>

The primary role of SuDS features is to restrict post development stormwater run-off to greenfield discharge rates. The development is to retain storm water volumes predicted to be experienced during extreme rainfall events. This is defined as the volume of storm water generated during a 1-in-100-year storm event, increased by 20% to account for the predicted effects of climate change.

4.2.4 Initial treatment of stormwater runoff

The second function of SuDS features is to permit stormwater quality to be improved before disposal and, where applicable, to allow stormwater to infiltrate into the ground on site rather than discharging to the public drainage system or to watercourses.

The proposed new stormwater drainage infrastructure has been designed and will be constructed in accordance with:

- i) The Greater Dublin Strategic Drainage Study (GDSDS), Volume 2
- ii) The Greater Dublin Regional Code of Practice for Drainage Works
- iii) British Standard BS EN 752:2008 (Drains and Sewer Systems Outside Buildings)
- iv) Part H of the Building Regulations (Building Drainage)

4.3 Proposed Sustainable Drainage System (SuDS) Design

Cavan County Council's Drainage Division requires that all developments adhere to their policy of implementing Sustainable Drainage Systems (SuDS). SuDS not only entail restricting stormwater discharge during extreme storm events but also to integrate sustainable water management solutions to create safe places. The features proposed shall reduce run-off volumes and pollution concentrations and enhance groundwater recharge and biodiversity.

4.3.1 <u>Attenuation Storage</u>

The restriction of post development run-off to greenfield discharge rates is to be achieved primarily through the provision of onsite attenuation storage, which shall retain excess runoff during extreme rainfall events and allow this to be discharged at a controlled rate.

In accordance with Cavan County Council's requirements, the subject site must retain stormwater generated on site during a 1-in-100-year storm event (increased by 20% for predicted climate change effects) and limit stormwater discharge from the site to the greenfield discharge rate.

To ensure an accurate calculation of the required attenuation for the development site Met Eireann was contacted to provide:

- i. The SAAR (Standard Annual Average Rainfall) of the area: 973mm/year.
- ii. The sliding duration table for the site indicating the 1-in-100-year rainwater intensities to be used.
- iii. Soil type value for the subject lands, this has been established as soil type 3.

QBar is calculated as follows: $QBAR = 0.00108 \times AREA^{0.89} \times SAAR^{1.17} \times SOIL^{2.17}$.

These parameters allow the Q-Bar greenfield runoff rate to be calculated. The calculated Q-Bar rate was determined to be 6.46 l/s/ha. A total attenuation storage volume of 1630m³ is required for the development site, and a total attenuation storage volume of 1630m³ is provided. Refer to the stormwater attenuation calculations attached as **Appendix D**.

Catchment 1

Catchment 1 has an area of 2.37ha (with an additional 1.01Ha to accommodate development of future areas) The greenfield runoff rate has been established as 22.8 l/s and the attenuation storage requirement is 1100m³. Total attenuation storage of 1100m³ (560m³ +

540m³) is provided for this catchment. Stormwater from this catchment shall discharge to the existing ditch to the north-east of the development site via a flow control device, at a maximum rate of 22.8 l/s.

Catchment 2

Catchment 2 has an area of 1.19ha. The greenfield runoff rate has been established as 7.9 l/s and the attenuation storage requirement is 530m³. Total attenuation storage of 530m³ is provided for this catchment. Stormwater from this catchment shall discharge to the existing ditch via a flow control device, at a maximum rate of 7.9 l/s.

4.3.2 Proposed SuDS Elements

The proposed SuDS features within the subject development shall consist of:

- a. Low water usage sanitary appliances to reduce the volume of potable water required for use within buildings.
- b. Permeable paving for car-parking bays to allow rainwater to dissipate into the ground, mimicking the current natural arrangement.
- c. Green Roofs for the apartment blocks.
- d. Installation of online water butts to capture rainwater from roof areas and to store this for local use, landscaping and maintenance purposes, further reducing reliance on the potable water network.
- e. Swales to capture the rainwater from the internal network and permit infiltration.
- f. Attenuation tank with permeability to allow for infiltration.
- g. Tree pits, Bio-retention areas.

4.3.3 SuDS Outline Management Plan

For the SUDS strategy to work as designed, it is important that the entire drainage system is well maintained. It shall be the responsibility of the site management team to ensure the drainage system is maintained. Maintenance and clearing of gullies drain manholes (including catch pits) and attenuation tanks shall ensure adequate performance.

4.4 Works to the Existing Stream

As part of this application, it is proposed to establish a 2-meterwide pedestrian footpath alongside the existing L1532 to establish connectivity between the primary junction of the development and the zebra crossing. Presently, there exists a stream flowing from north to south along the western side of the existing L1532 road within the development's ownership boundary. To accommodate the proposed footpath, it is necessary to alter the existing stream. The section of the stream to be altered spans approximately 100 meters, and the westward shift required is in the range of 1-2 meters.

Furthermore, where the proposed road junction and the shared pedestrian and cyclist path cross the stream, the installation of two culverts is imperative. The sizing of these culverts has been estimated based on the OPW CFRAM maps, utilizing the 100-year top of water flood level and the existing channel dimensions. It is worth noting that the watercourse works and culvert sizing are to be agreed in detail with OPW during the Section 50 application process.

5.0 FOUNDATIONS

The construction of the houses will involve complex sequencing of activities and various construction methodologies could be adopted to deliver the Contract. It is envisaged that the proposed buildings could be constructed as combination of blockwork and/or timber frame elements subject to change in detailed design stages.

As noted, the construction methodology and therefore the programme of the construction activities will be dictated by the Contractor.

The following outlines a general construction sequence:

Buildings Structure:

- Construction of the foundations traditional strip foundations, ground beams and floor slabs;
- Construction of rising elements to ground floor;
- Construction of 215mm masonry load bearing walls and any required reinforced concrete beams and columns;
- Installation of precast floor panels on load bearing walls;
- Installation of screed on precast floor panels.

Envelope / Cladding:

 Commencement of envelope works to ground floor when structure has progressed to 1st floor level, with suitable temporary openings in the façade left for ease of transport of construction material;

Mechanical & Electrical fit-out:

• First fix will commence at each level behind structure; and

• This will be followed by the second fix and the final connections

Fit-out:

- Initial installation of stud work when cladding is complete, and floor is weather tight;
- Installation of equipment and associated connection to services; and
- Completion of finishes.

Commissioning:

- The final commissioning period will commence during fit-out; and
- The above is an indicative construction sequence. The final sequence will be dictated by the Contractor. The Contractor must issue a detailed construction programme outlining the various stages prior to commencement of works.

Appendix A: Existing Irish Water & Local Authority Record Plans

	Al Al	<pre><dd r<br=""><dd r<br=""><dd pre="" r<=""></dd></dd></dd></pre>
Lightid Control of the second	Checked By: Approved By:	Drawn Date Checked Date: Approved Date:

TER

ÉIREANN : IRISH

tent. License No. 3-3-34

luced from the Ordnance Survey Of Ireland by Permission of the Gove

þ

280 m tem: TM65 Irish Grid ısverse Mercator <Add Name> Approved By: <Add Name> IW-AGG-2018-000 14/02/2023 1:3,064 M Checked By: Drawn Date

Checked Date: <dd/mm/yyyy> Approved Date: <dd/mm/yyyy>

es h	140
Ngs Ing Vaeer Vaeer Vaer Vaer Ndoned Lines	70
Water Fitti a Cap conser Fit water Main Water Main Owned) Owned) Water Main Water Main Water Abai	0

Pump Stations	Pump Stations	Water Network Structures	2 Water Network Structures	Abstraction Point	Y Abstraction Point	Water Fittings	± Cap	 Other Fitting 	Water Mains(Irish Water Owned)	Potable Water	Water Mains(Non Irish Water Owned)	Potable Water	Water Abando and Lines
---------------	---------------	--------------------------	----------------------------	-------------------	---------------------	----------------	-------	-----------------------------------	-----------------------------------	---------------	---------------------------------------	---------------	------------------------

Legend Non Boundary Meter R Mee Boundary Meter R Detrict(Boundary Meen) Vater Mydrants • FlotMydrants

0 70 14	Coordinate Syste Projection: Trans	Scale @ A3:	Drawing No.:		Drawn By:	
			_	-	ey Leid and 2010	

of Irish Water as copyright holder except as agreed for use on No part of this drawing may be reproduced or transmitted in any form or store the project for which the document was originally issued. every care has t

tion, Irish Water gives this inf ority in Ireland to Irish Water.

of the

Copyright Irish Water

suced from the Ordnance Survey Of Ireland by Permission of the Government. License No. 3-3-34

Appendix B: Confirmation of Feasibility (CoF)

Joe Fryers CS Consulting 19-22 Dame Street Dublin 2 Dublin D02 E267

28 February 2024

Re: Design Submission for Site at Drumlark, Cavan (Phase 1 – 145 units), (the "Development") (the "Design Submission") / Connection Reference No: CDS23000589 Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

Dear Joe Fryers,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Uisce Éireann has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before you can connect to our network you must sign a connection agreement with Uisce Éireann. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Uisce Éireann's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Uisce Éireann's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Uisce Éireann does not, in any way, render Uisce Éireann liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Uisce Éireann representative: Name: Richard Daly Email: richard.daly@water.ie

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

Appendix A

Document Title & Revision

- Proposed Drainage Layout Drawing No. D111-CSC-XX-XX-DR-C-0002_Rev P5
- Proposed Watermain Layout Drawing No. D111-CSC-XX-XX-DR-C-0003_Rev P5
- Proposed Drainage Details Sheet 1 Drawing No. D111-CSC-XX-XX-DR-C-004_Rev P1
- Proposed Drainage Details Sheet 1 Drawing No. D111-CSC-XX-XX-DR-C-004_Rev P1
- Proposed Watermain Details Sheet 1 Drawing No. D111-CSC-XX-XX-DR-C-007_Rev P2
- Proposed Watermain Details Sheet 2 Drawing No. D111-CSC-XX-XX-DR-C-008_Rev P2
- Irish Water Long Sections Sheet 1 Drawing No. D111-CSC-XX-XX-DR-C-0100_Rev P2
- Irish Water Long Sections Sheet 2 Drawing No. D111-CSC-XX-XX-DR-C-0101_Rev P2
- Irish Water Long Sections Sheet 3 Drawing No. D111-CSC-XX-XX-DR-C-0102_Rev P2

For further information, visit www.water.ie/connections

Notwithstanding any matters listed above, the Customer (including any appointed

<u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Uisce Éireann will not, in any way, render Uisce Éireann liable for any elements of the design and/or construction of the Self-Lay Works.

CONFIRMATION OF FEASIBILITY

Joe Fryers

19-22 Dame Street Dublin 2 Co. Dublin D02E267

8 March 2023

Our Ref: CDS23000572 Pre-Connection Enquiry Site At, Drumlark, Cavan, Cavan

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Irish Water has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 150 unit(s) at Site At, Drumlark, Cavan, Cavan, (the **Development)**.

Based upon the details provided we can advise the following regarding connecting to the networks;

Water Connection

Feasible without infrastructure upgrade by Irish Water

- Please note that according to our records there is an existing water main running through this site (see drawing attached).

Any structures or works over or in close proximity to Irish Water infrastructure that will inhibit access for maintenance or endanger structural or functional integrity of the infrastructure are not allowed.

The layout of the development must ensure that this pipe is protected and adequate separation distances are provided between Irish Water infrastructure and any structures on site. Alternatively you may enter into a diversion agreement with Irish Water and divert the pipe to accommodate your development. If you wish to proceed with this option please contact Irish Water at

Olfig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dúblin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe In Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Stuarthöiri / Directors: Tony Keohane (Chairman), Niall Gleeson (CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Elleen Maher, Cathy Mannion, Michael Walsh

Diversions@water.ie and submit detailed design drawings before submitting your planning application. It will be necessary to provide a wayleave over this pipe to the benefit of Irish Water and ensure that it is accessible for maintenance. For more information, please see go to the link below: https://www.water.ie/connections/developerservices/diversions/

Wastewater - Feasible without infrastructure upgrade by Irish Water

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Irish Water.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

- Section A What is important to know?
- **Section B** Details of Irish Water's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Irish Water's network(s). This is not a connection offer and capacity in Irish Water's network(s) may only be secured by entering into a connection agreement with Irish Water.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

onne Mae

Yvonne Harris Head of Customer Operations

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	• Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Irish Water's network(s).
	 Before the Development can connect to Irish Water's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Irish Water.
When should I submit a Connection Application?	A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Irish Water connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Irish Water's network(s), including works in the public space, must be carried out by Irish Water*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Irish Water's network(s)?	 Requests for maps showing Irish Water's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	 The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Irish Water</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	 More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u> **trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

Section B – Details of Irish Water's Network(s)

The map included below outlines the current Irish Water infrastructure adjacent the Development: To access Irish Water Maps email datarequests@water.ie

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Irish Water's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Irish Water.

Whilst every care has been taken in respect of the information on Irish Water's network(s), Irish Water assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Irish Water's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Irish Water's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Appendix C: Foul Drainage Network Calculations

Cronin & Sutton Consulting	Page 1											
1st Floor, 19-22 Dame Street												
D02 N500 Ireland												
Date 28/02/2024 11:28	Designed by Antonio. Campello											
File Foul PO3.MDX	Checked by											
l nnovyze	Network 2020.1.3											
FOUL	FOUL SEWERAGE DESIGN											
Design Criteria for Foul - Main												
Pi pe Si zes STA	Pi pe Si zes STANDARD Manhol e Si zes STANDARD											
Industrial Flow (I/s/ha) 0.00 Add Flow / Climate Change (%) 0 Industrial Peak Flow Factor 0.00 Minimum Backdrop Height (m) 0.000 Flow Per Person (I/per/day) 150.00 Maximum Backdrop Height (m) 6.000 Persons per House 2.70 Min Design Depth for Optimisation (m) 1.200 Domestic (I/s/ha) 0.00 Min Vel for Auto Design only (m/s) 0.75 Domestic Peak Flow Factor 6.00 Min Slope for Optimisation (1:X) 200 Designed with Level Soffits												
Network Design Table for Foul - Main												
PN Length Fall Slope Area Hous (m) (m) (1:X) (ha)	ses Base k HYD DIA Section Type Auto Flow (l/s) (mm) SECT (mm) Design											
F1. 000 17. 446 1. 342 13. 0 0. 000	0 0.0 1.500 o 225 Pipe/Conduit											
F1. 001 49. 173 0. 820 80. 0 0. 000 F1. 002 20. 673 0. 345 60. 0 0. 000	0 0.01.500 0 225 Pipe/Conduit 👸											
F1. 003 29. 217 0. 487 60. 0 0. 000 F1. 004 17 333 0 289 60 0 0 000	0 0.01.500 o 225 Pipe/Conduit											
F1. 005 20. 774 0. 944 22. 0 0. 000	0 0.01.500 0 225 Pi pe/Condui t											
F1.006 41.250 1.875 22.0 0.000	0 0.01.500 o 225 Pipe/Conduit 🧬											
F2. 00037. 5190. 62560. 00. 000F2. 00139. 6010. 264150. 00. 000	0 0.01.500 o 150 Pipe/Conduit ∂ 0 0.01.500 o 150 Pipe/Conduit ∂											
F1. 007 64. 862 0. 721 90. 0 0. 000 F1. 008 26. 623 0. 296 90. 0 0. 000 F1. 008 26. 623 0. 296 90. 0 0. 000	0 0.01.500 o 225 Pipe/Conduit ♂ 0 0.01.500 o 225 Pipe/Conduit ♂											
F1.009 16.586 0.276 60.0 0.000	0 0.01.500 o 225 Pipe/Conduit 💣											
PN US/IL E Area E Base (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)											
F1. 000 77. 542 0. 000 0. 0	0 0.0 0 0.00 3.19 127.0 0.0											
F1. 002 75. 380 0. 000 0. 0	0 0.0 0 0.00 1.48 59.0 0.0 0 0.0 0 0.00 1.48 59.0 0.0											
F1. 003 75. 035 0. 000 0. 0	0 0.0 0 0.00 1.48 59.0 0.0											
F1. 005 74. 260 0. 000 0. 0	0 0.0 0 0.00 2.45 97.5 0.0											
F1. 006 73. 315 0. 000 0. 0	0 0.0 0 0.00 2.45 97.5 0.0											
F2. 00071. 9640. 0000. 0F2. 00171. 3390. 0000. 0	0 0.0 0 0.00 1.13 20.0 0.0 0 0.0 0 0.00 0.71 12.6 0.0											
F1.007 71.000 0.000 0.0	0 0.0 0 0.00 1.21 48.1 0.0											
F1.008/0.2/90.0000.0F1.00969.9830.0000.0	U 0.0 0 0.00 1.21 48.1 0.0 0 0.0 0 0.00 1.48 59.0 0.0											
©198	32-2020 Innovyze											

Croni n	& Sutt	on Co	nsul ti	ng							Page	e 2
1st Flo	or, 19	-22 D	ame St	treet							0	
Dublin											L	~
DO2 N50	0, Ire	l and									Mir	m
Date 28	/02/20	24 11	: 28		De	signed by	Anto	ni o. C	Campe	el I O	Dca	inado
File Fo	ul PO3	. MDX			Ch	ecked by					DIC	maye
l nnovyz	е				Ne	twork 202	0. 1. 3					
			Netw	iork L)esi gn	lable for	Foul	- Ma	ain			
PN	Length	Fall	Slope	Area	Houses	Base	k	HYD	στα	Section '	Type	Auto
	(m)	(m)	(1:X)	(ha)	noubeb	Flow (1/s)	(mm)	SECT	(mm)		1160	Design
E1 010	33 500	0 542	60 0	0 000	0	0.0	1 500	0	225	Pino/Con	dui t	
F1.010	28.877	0. 343	60. 0	0.000	0	0.0	1.500	0	225	Pi pe/Cond	dui t	Ū A
F1.012	30. 761	0.513	60.0	0.000	0	0.0	1.500	0	225	Pi pe/Cond	dui t	ď
F1.013	26. 926	1. 224	22.0	0.000	0	0.0	1. 500	0	225	Pi pe/Cond	dui t	Ū
F3.000	13. 718	0. 624	22.0	0.000	0	0. 0	1. 500	0	225	Pi pe/Cond	dui t	a
F3. 001	25. 959	1. 180	22.0	0.000	0	0.0	1. 500	0	225	Pi pe/Cond	dui t	ď
F1 014	62 998	2 032	31 0	0 000	0	0.0	1 500	0	300	Pi ne/Cond	t inc	a
F1.015	25. 902	0. 618	41.9	0.000	0	0.0	1.500	0	300	Pi pe/Cond	dui t	en e
F1.016	3. 575	0. 024	150. 0	0.000	0	0. 0	1. 500	0	300	Pi pe/Cond	dui t	ĕ
F4 000	73 036	3 320	22 0	0 000	0	0.0	1 500	0	150	Pi pe/Cond	dui t	A
	/0/000	0.020	2210	01 000	Ũ	01.0		0				
F5.000	93. 127	3. 326	28. 0	0.000	0	0.0	1. 500	0	225	Pi pe/Cond	dui t	0
F4. 001	23. 995	1. 091	22.0	0.000	0	0. 0	1. 500	0	225	Pi pe/Cond	dui t	æ
F4.002	65.183	2.963	22.0	0.000	0	0.0	1.500	0	225	Pi pe/Cond	dui t	ð
F4. 003	22.809	1. 037	22.0	0.000	0	0.0	1. 500	0	225	Pi pe/Cond	dui t	ď
F6. 000	22. 844	1. 523	15.0	0.000	0	0. 0	1. 500	0	150	Pi pe/Cond	dui t	ð
												-
				NI	otwork		Tablic					
				IN		NGSUL LS	ianie					

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s	Σ)	Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
F1. 010 F1. 011 F1. 012	69. 707 69. 164 68. 683	0.000 0.000	0. 0. 0	0 0	0 0	0. 0 0. 0 0. 0	0 0	0.00	1.48 1.48 1.48	59. 0 59. 0 59. 0	0.0	
F1. 012	68. 170	0.000	0.	0	0	0.0	0	0.00	2.45	97.5	0.0	
F3. 000 F3. 001	<mark>69. 000</mark> 68. 376	0. 000 0. 000	0. 0.	0 0	0 0	0. 0 0. 0	0 0	0. 00 0. 00	2.45 2.45	97.5 97.5	0. 0 0. 0	
F1.014	66. 400	0.000	0.	0	0	0.0	0	0.00	2.50	176.4	0.0	
F1. 015 F1. 016	63. 763 62. 527	0.000	0. 0.	0	0	0.0	0	0.00	2. 14 1. 13	151.5 80.0	0.0	
F4.000	70. 820	0.000	0.	0	0	0. 0	0	0. 00	1.87	33. 1	0.0	
F5.000	70. 747	0.000	0.	0	0	0. 0	0	0. 00	2. 17	86.4	0.0	
F4. 001	67.421	0.000	Ο.	0	0	0. 0	0	0.00	2.45	97.6	0.0	
F4.002	66.330	0.000	Ο.	0	0	0.0	0	0.00	2.45	97.5	0.0	
F4. 003	63.367	0.000	Ο.	0	0	0.0	0	0.00	2.45	97.5	0.0	
F6. 000	69. 100	0. 000	0.	0	0	0. 0	0	0. 00	2. 27	40. 1	0.0	
			©19	782-	202	0 Ennovy	/ze					

Cronin & Sutton Co	onsul ti ng			Page 3
Dublin	ame street			
DO2 N500, Ireland				Mirro
Date 28/02/2024 11	: 28	Designed by Ant	oni o. Campel I o	Drainage
FILE FOUL PO3. MDX		Network 2020 1	3	brainage
		NCTWOIR 2020. 1.	5	
	Network Desig	gn Table for Fou	l - Main	
PN Length Fall (m) (m)	Slope Area Hous (1:X) (ha)	ses Base k Flow (l/s) (mm)	HYD DIA Section SECT (mm)	Type Auto Design
F7.000 14.047 0.639	22.0 0.000	0 0.0 1.50	0 o 150 Pipe/Cor	nduit 👸
F6. 001 14. 469 1. 113 F6. 002 6. 455 0. 497 F6. 003 57. 450 3. 379	13.00.000 13.00.000 17.00.000	0 0.01.50 0 0.01.50 0 0.01.50 0 0.01.50	0 o 150 Pi pe/Cor 0 o 150 Pi pe/Cor 0 o 150 Pi pe/Cor	nduit 💣 nduit 💣 nduit 💣
F4. 004 97. 949 3. 710 F4. 005 7. 005 0. 318	26. 4 0. 000 22. 0 0. 000	0 0.0 1.50 0 0.0 1.50	0 o <mark>225</mark> Pi pe/Cor 0 o 225 Pi pe/Cor	nduit 💣 nduit 💣
	Netwo	ork Results Table	2	
PN US/IL Σ (m)	E Area Σ Base (ha) Flow (l/s)	Σ Hse Add Flow P.D (1/s) (m	Dep P.Vel Vel Cap m) (m/s) (m/s) (l/s	Flow) (1/s)
F7.000 <u>68</u> .500	0.000 0.0	0 0.0	0 0.00 1.87 33.	1 0.0
F6.001 67.577	0.000 0.0	0 0.0	0 0.00 2.44 43.	1 0.0
F6. 002 66. 464 F6. 003 65. 967	0. 000 0. 000 0. 0	0 0.0 0 0.0	0 0.00 2.44 43. 0 0.00 2.13 37.	1 0.0 7 0.0
F4. 004 62. 330 F4. 005 58. 620	0.000 0.000 0.0	0 0.0 0 0.0	0 0.00 2.24 89. 0 0.00 2.45 97.	0 0.0 5 0.0
Fr	ee Flowing Out	fall Details for	Foul - Main	
Out Pipe	tfall Outfall C Number Name	. Level I. Level (m) (m) I.	Min D,L W Level (mm) (mm) (m)	
	F1. 016 F	64. 100 62. 503	0.000 0 0	
Er	ee Flowing Out	fall Details for	Foul - Main	
Out Pipe	tfall Outfall C Number Name	. Level I. Level (m) (m) I.	Min D,L W Level (mm) (mm) (m)	
	F4.005 F	61.330 58.302	58.300 0 0	
	©198	32-2020 Innovyze		

Appendix D: Surface Water Network Calculations & Modelling Analysis & Attenuation

Cronin & Sutton Consulting Page 1										
Dublin										
D02 N500, I rel and	Designed by Asteria Correlia Micro									
File Storm PO3. MDX	Checked by									
Innovyze	Network 2020. 1. 3									
STORM SEWER DESIGN	by the Modified Rational Method									
<u>Desi gn</u>	Criteria for Storm									
Pipe Sizes STANDARD Manhole Sizes STANDARD										
FSR Rainfall Model - Scotland and IrelandReturn Period (years)5PIMP (%)100M5-60 (mm)16.800Add Flow / Climate Change (%)0Ratio R0.329Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m)10.000Maximum Time of Concentration (mins)30 Min Design Depth for Optimisation (m)1.200Foul Sewage (I/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)250Designed with Level Soffits										
Network [Design Table for Storm									
« - Indica	ates pipe capacity < flow									
PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (m:	.E. Base k HYD DIA Section Type Auto ins) Flow (l/s) (mm) SECT (mm) Design									
S1.000 21.922 0.091 240.9 0.510 9 S1.001 16.290 0.627 26.0 0.000 0 S1.002 50.950 0.204 249.8 0.265 0 S1.003 18.714 0.150 125.0 0.090 0 S1.004 28.421 0.944 30.1 0.204 0 S1.005 17.959 0.242 74.1 0.077 0 S1.006 23.456 0.321 73.1 0.098 0 S1.007 41.557 2.451 17.0 0.263 0	5.00 0.00.600 0 300 Pi pe/Conduit 0 0.00 0.00.600 0 300 Pi pe/Conduit 0 0.00 0.00.600 0 375 Pi pe/Conduit 0									
S2.000 38.087 0.317 120.0 0.131 52.001 S2.001 38.813 0.323 120.0 0.280 0	5.00 0.00.600 0.450 Pipe/Conduit Image: Conduit 0.00 0.00.600 0.450 Pipe/Conduit Image: Conduit									
Netw	ork Results Table									
PN Rain T.C. US/IL Σ I. (mm/hr) (mins) (m) (h	Area Σ Base Foul Add Flow Vel Cap Flow a) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)									
S1. 000 50. 00 5. 36 77. 500 0 S1. 001 50. 00 5. 45 77. 409 0 S1. 002 50. 00 6. 19 75. 711 0 S1. 003 50. 00 6. 39 75. 507 0 S1. 004 50. 00 6. 53 75. 357 1 S1. 005 50. 00 6. 67 74. 413 1 S1. 006 50. 00 6. 86 74. 171 1 S1. 007 50. 00 7. 01 73. 850 1 S2. 000 50. 00 5. 34 72. 000 0 S2 001 50. 00 5. 69 71 683 0	S1.000 50.00 5.36 77.500 0.510 0.0 0.0 1.01 71.3 69.1 S1.001 50.00 5.45 77.409 0.510 0.0 0.0 0.0 3.10 218.8 69.1 S1.002 50.00 6.19 75.711 0.775 0.0 0.0 0.0 1.41 126.1 104.9 S1.003 50.00 6.39 75.507 0.865 0.0 0.0 0.0 1.62 178.8 117.2 S1.004 50.00 6.53 75.357 1.069 0.0 0.0 0.0 2.11 232.7 155.2 S1.005 50.00 6.67 74.413 1.46 0.0 0.0 0.0 2.12 234.3 168.4 S1.007 50.00 6.86 74.171 1.244 0.0 0.0 0.0 2.12 234.3 168.4 S1.007 50.00 7.01 73.850 1.506 0.0 0.0 0.0 4.42 488.0 204.0 S2.000 50.00 5.34 72.000 0									
©19	©1982-2020 Innovyze									

Croni n	Cronin & Sutton Consulting Page 2											
1st Flo	oor, 19	9-22 [Dame S	treet							(
Dublin											Y	~
DO2 N50	DO, Ire	el and									Min	(I)
Date 28	3/02/20)24 11	: 49		Des	signed by	Antor	ni o. C	ampe	10	Dca	in ago
File S ⁻	torm PC)3. MD>	<		Che	ecked by					DIG	inaye
l nnovyz	ze				Ne	twork 2020). 1. 3			•		
				Networ	k Desi	gn lable i	for St	torm				
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section	Tvpe	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		11 -	Design
S1. 008	67.767	0. 847	80. 0	0.059	0.00	0. 0	0.600	0	600	Pi pe/Con	dui t	ð
S1. 009	27.006	0. 338	80. 0	0.146	0.00	0. 0	0.600	0	600	Pi pe/Con	dui t	ð
S1.010	7.839	0.098	80.0	0.000	0.00	0.0	0.600	0	600	Pi pe/Con	dui t	d a construction of the second
S1.011	12.904 8.378	0.162	80. U 25. 7	0.000	0.00	0.0	0.600	0	300	Pipe/Con	dui t	<u> </u>
S1.012	26. 451	0. 388	68.2	0. 148	0.00	0.0	0.600	0	300	Pi pe/Con	dui t	
S1.014	29. 911	0.150	199.4	0. 098	0.00	0.0	0.600	0	300	Pi pe/Con	dui t	ă
S1. 015	30. 401	0. 152	200. 0	0.071	0.00	0.0	0.600	0	300	Pi pe/Con	dui t	ě
S1. 016	29.940	0. 225	133. 1	0.075	0.00	0.0	0. 600	0	300	Pi pe/Con	dui t	0
S3. 000	9.019	0. 045	200. 0	0.500	5.00	0.0	0.600	0	300	Pi pe/Con	dui t	æ
S3. 001	6.574	0. 033	199. 2	0.000	0.00	0.0	0.600	0	300	Pi pe/Con	dui t	ď
S3. 002	13. 086	0. 063	206.7	0.000	0.00	0.0	0. 600	0	300	Pi pe/Con	dui t	ď
S3. 003	28.877	2. 188	13. 2	0. 119	0.00	0. 0	0. 600	0	300	Pi pe/Con	dui t	ď
S1. 017	56. 110	3. 979	14.1	0. 255	0.00	0.0	0. 600	0	375	Pi pe/Con	dui t	A
S1. 018	6.657	0. 027	250. 0	0.000	0.00	0.0	0.600	0	375	Pi pe/Con	dui t	ē
S1.019	13.843	0.545	25.4	0.000	0.00	0.0	0.600	0	375	Pi pe/Con	dui t	0
S1. 020	5.542 4 E12	0.290	19.1	0.000	0.00	0.0	0.600	0	225	Pipe/Con	dui t	
51.021	0.513	0.013	500. U	0.000	0.00	0. 0	U. 000	0	220	Pi per con	uur t	
				Ne	etwork	Results T	abl e					
PN	Rai	n T	.c. u	S/IL Σ	I.Area	Σ Base	Foul	Add E	low	Vel Ca	ар	Flow

PN	Rain	T.C.	US/IL	Σ	I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)		(ha)	Flow	(l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)	
S1 008	50 00	7 43	71 350		1 976		0 0	0 0	0.0	2 72	770 3	267 6	
S1.000	50.00	7 59	70 503		2 123		0.0	0.0	0.0	2.72	770.3	287 5	
S1.007	50.00	7 64	70 165		2.123		0.0	0.0	0.0	2.72	770.3	287 5	
S1.010	50.00	7 72	70,067		2.123		0.0	0.0	0.0	2.72	770.3	287 5	
S1.011	50.00	7 76	68 400		2.123		0.0	0.0	0.0	3 11	220 1«	287.5	
S1.012	50.00	8 00	68 074		2.123		0.0	0.0	0.0	1 01	13/ 8/	307 5	
S1 014	50.00	8 44	67 686		2.271		0.0	0.0	0.0	1 11	78 4 <i>«</i>	320 7	
S1 015	50.00	8 90	67 536		2.007		0.0	0.0	0.0	1 11	78.3«	330 4	
S1.016	50.00	9.27	67 384		2.515		0.0	0.0	0.0	1 36	96.2«	340 6	
51.010	50.00	7. 21	07.001		2.010		0.0	0.0	0.0	1. 00	70. Z ×	010.0	
S3. 000	50.00	5.14	69.500		0, 500		0.0	0.0	0.0	1, 11	78.3	67.7	
S3. 001	50.00	5.23	69.455		0.500		0.0	0.0	0.0	1, 11	78.5	67.7	
S3. 002	50.00	5.43	69.422		0.500		0.0	0.0	0.0	1.09	77.0	67.7	
S3. 003	50.00	5.55	69.359		0.619		0.0	0.0	0.0	4.35	307.5	83.9	
S1.017	50.00	9.46	67.159		3. 389		0.0	0.0	0.0	4.85	535.3	458.9	
S1. 018	50.00	9.56	63. 162		3. 389		0.0	0.0	0.0	1.14	126. 1«	458.9	
S1.019	50.00	9.62	63.135		3. 389		0.0	0.0	0.0	3. 61	398. 5«	458.9	
S1. 020	50.00	9.65	62.590		3. 389		0.0	0.0	0.0	3. 01	119.6«	458.9	
S1. 021	50.00	9.84	62.300		3. 389		0.0	0.0	0.0	0. 58	23. O«	458.9	
				C	1982-2	2020	l nnov	yze					
								2					

Croni n	& Sutt	ton Co	onsul t	ing							Pag	e 3
1st Flo	oor, 19)-22 [)ame S	Street								
Dublin											1	No. mar
DO2 N50)0, Ire	el and	1 40				A 1				Mi	cro
Date 28	3/02/20)24 11 22 MDX	1:49		De	signed by	Antor	n o. Ca	ampe	110	Dra	inade
Linner 2020 1 2											1.00	
T nnovy₂	<u>ze</u>				NE	elwork 2020). . 3					
	Network Design Table for Storm											
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Secti	on Type	Auto Design
S4. 000	39. 810	1. 991	20. 0	0. 186	5.00	0.0	0. 600	0	225	Pi pe∕	Condui t	•
S5. 000	20. 890	0. 240	87. 0	0. 051	4.00	0.0	0. 600	0	225	Pi pe∕	Condui t	0
S4. 001	30. 199	1. 589	19. 0	0. 111	0.00	0. 0	0. 600	0	225	Pi pe∕	Condui t	•
S6. 000	99. 751	5. 161	19.3	0. 296	5.00	0. 0	0. 600	0	225	Pi pe∕	Condui t	0
S4. 002	24. 285	1.799	13.5	0.097	0.00	0.0	0.600	0	375	Pi pe/	Condui t	•
S4. 003 S4. 004	65.018 22 787	1.389	46.8 31.8	0.000	0.00	0.0	0.600	0	375	Pipe/ Pipe/	Condui t Condui t	
011001	221707	01 / 1 /	0110	01 107	01 00	0.0	0.000	0			oonaan e	•
S7.000	19. 492	1. 147	17.0	0.045	5.00	0.0	0. 600	0	225	Pi pe∕	Condui t	0
S8. 000	14. 557	0. 097	150. 0	0. 119	5.00	0.0	0. 600	0	225	Pi pe∕	Condui t	0
S7. 001	16.331	0. 726	22.5	0. 051	0.00	0.0	0.600	0	225	Pi pe∕	Condui t	
S7.002	8.401	0.295	28.5	0.000	0.00	0.0	0.600	0	225	Pi pe/	Condui t	- 0
\$7.003	55.444	4. 332	12.8	0. 136	0.00	0.0	0.600	0	225	Pi pe/	Condui t	•
S4. 005	4.218	0. 143	29. 5	0.000	0.00	0.0	0.600	0	450	Pi pe∕	Condui t	8
S4. 006	2.769	0. 020	138.4	0.000	0.00	0.0	0. 600	0	225	Pi pe∕	Condui t	0
				Ne	twork	Results T	abl e					
PN	I Ra: (mm/	in I 'hr) (n	l.C. U Nins)	US/IL Σ (m)	I.Area (ha)	a ΣBase Flow (l/s)	Foul (1/s)	Add 1 (1/	Flow 's)	Vel (m/s)	Cap (1/s)	Flow (l/s)
			F 00 -	0 () (0 10		0 0		0 0	0.04	11/ 0	05 0

PN	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S4. 000	50.00	5.23	70. 646	0. 186	0. 0	0.0	0.0	2. 94	116. 9	25. 2	
S5.000	50.00	4. 25	68. 900	0. 051	0.0	0.0	0.0	1.40	55.8	6. 9	
S4. 001	50.00	5.39	68. 646	0. 348	0.0	0.0	0.0	3. 02	119. 9	47.1	
S6. 000	50.00	5.56	72. 465	0. 296	0.0	0.0	0.0	2. 99	118. 9	40. 1	
S4. 002 S4. 003 S4. 004	50. 00 50. 00 50. 00	5.64 6.05 6.15	67. 050 65. 250 63. 860	0. 741 0. 741 0. 849	0. 0 0. 0 0. 0	0. 0 0. 0 0. 0	0. 0 0. 0 0. 0	4. 95 2. 65 3. 62	547. 1 293. 2 575. 0	100. 4 100. 4 114. 9	
S7. 000	50.00	5.10	69. 868	0. 045	0.0	0.0	0.0	3. 19	126. 8	6. 0	
S8. 000	50.00	5.23	68. 800	0. 119	0. 0	0.0	0.0	1.07	42.4	16. 2	
S7. 001 S7. 002 S7. 003	50.00 50.00 50.00	5.33 5.38 5.63	68. 700 67. 970 67. 475	0. 215 0. 215 0. 351	0. 0 0. 0 0. 0	0. 0 0. 0 0. 0	0. 0 0. 0 0. 0	2. 77 2. 46 3. 68	110. 2 97. 9 146. 2	29. 1 29. 1 47. 5	
S4. 005 S4. 006	50. 00 50. 00	6. 17 6. 21	63. 143 63. 000	1. 200 1. 200	0. 0 0. 0	0. 0 0. 0	0. 0 0. 0	3. 75 1. 11	597. 1 44. 1«	162.4 162.4	
				©1982-2	020 Innov	yze					

Cronin & Sutton Consulting		Page 4
1st Floor, 19-22 Dame Street		
Dubl i n		
DO2 N5OO, Ireland		Micro
Date 28/02/2024 11:49	Designed by Antonio.Campello	Desinado
File Storm PO3.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	1

Network Design Table for Storm

PN Len	gth Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA	Section Type	Auto
(m) (m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
S4.007 31.3 S4.008 56.3 S4.009 2	893 0.138 771 3.639 778 0.011	228.0 15.6 252.6	0.000	0.00		0.0	0.600 0.600	0	225 225 225	Pi pe/Condui t Pi pe/Condui t Pi pe/Condui t	8

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣВ	ase	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(l/s)	(1/s)	(l/s)	(m/s)	(l/s)	(l/s)
S4. 007	50.00	6. 82	62. 980	1. 200		0.0	0.0	0.0	0. 86	34.3«	162.4
S4. 008	50.00	7.10	62.842	1. 200		0.0	0.0	0.0	3.33	132.4«	162.4
S4.009	50.00	7.16	59.200	1. 200		0.0	0.0	0.0	0.82	32.5«	162.4

Cronin & Sutton Co	nsul ti n	g					Page 5
1st Floor, 19-22 D	ame Str	eet					
Dublin							L.
DO2 N500, Ireland							Micro
Date 28/02/2024 11	: 49		De	esigned b	y Antonic	o. Campello	Desinado
File Storm PO3. MDX			Ch	necked by			Diamage
Innovyze			Ne	etwork 20	20. 1. 3		
		Area	a Sur	nmary for	Storm		
Pi	pe PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
IN CLIII	ber iype	Name	(0)	Area (na)	Area (IIa)	(IIA)	
1.	000 User	-	100	0. 510	0. 510	0.510	
1.	001 -	-	100	0.000	0.000	0.000	
I. 1	002 User 003 User	-	100	0.265	0.265	0.265	
1.	003 User 004 User	_	100	0. 204	0. 204	0. 204	
1.	005 User	-	100	0.077	0.077	0.077	
1.	006 User	-	100	0. 098	0. 098	0. 098	
1.	007 User	-	100	0. 263	0. 263	0. 263	
2.	000 USER	_	100	U. 131 0. 280	U. 131 0. 280	U. 131 0.280	
2. 1.	008 User	-	100	0. 200	0. 200	0.059	
1.	009 User	-	100	0. 146	0. 146	0. 146	
1.	010 -	-	100	0.000	0.000	0.000	
1.	011 -	-	100	0.000	0.000	0.000	
1.	012 - 013 User	_	100	0.000	0.000	0.148	
1.	014 User	-	100	0. 098	0. 098	0. 098	
1.	015 User	-	100	0. 071	0. 071	0. 071	
1.	016 User	-	100	0.075	0.075	0.075	
3.	000 USEI 001 -	_	100	0.500	0.500	0.000	
3.	002 -	-	100	0.000	0.000	0.000	
3.	003 User	-	100	0. 119	0. 119	0. 119	
1.	017 User	-	100	0. 255	0. 255	0. 255	
1.	018 -	_	100	0.000	0.000	0.000	
1.	020 -	-	100	0.000	0.000	0.000	
1.	021 -	-	100	0.000	0.000	0.000	
4.	000 User	-	100	0. 186	0. 186	0. 186	
5. A	000 User 001 User	-	100	0.051	0.051	0.051	
6.	000 User	-	100	0. 296	0. 296	0. 296	
4.	002 User	-	100	0. 097	0. 097	0. 097	
4.	003 -	-	100	0.000	0.000	0.000	
4. 7	004 User 000 User	-	100	0.107	0.107	0.107	
8.	000 User	-	100	0. 119	0. 119	0. 119	
7.	001 User	-	100	0. 051	0. 051	0. 051	
7.	002 -	-	100	0.000	0.000	0.000	
Ι.	003 User	-	100	0.136	0.136	0.136	
4.	006 -	_	100	0.000	0.000	0.000	
4.	- 007	-	100	0.000	0.000	0.000	
4.	- 800	-	100	0.000	0.000	0.000	
4.	- 009	-	100	U. UUO Total	U. UUO Total	0.000 Total	
				4. 589	4. 589	4. 589	
						-	
		© 1	022	2020 Lnn			
			102-	2020 11111	JVYZE		

Cronin & Sutton Consulting		Page 6
1st Floor, 19-22 Dame Street		
Dubl i n		
D02 N500, Ireland		Micro
Date 28/02/2024 11:49	Designed by Antonio.Campello	Drainage
File Storm PO3.MDX	Checked by	brainage
Innovyze	Network 2020.1.3	
Free Flowing	Outfall Details for Storm	
Pipe Number Name	(m) (m) I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
S1. 021 S	65.000 62.287 62.300 0 0	
Free Flowing	Outfall Details for Storm	
Outfall Outfall C Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
S4. 009 S	60.000 59.189 59.000 0 0	
<u>Si mul ati</u>	on Criteria for Storm	
Volumetric Runoff Coeff (Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (I/s) (Number of Input Hydrogr Number of Online Cont Number of Offline Cont	J. 840 Additional Flow - % of lotal Fl I. 000 MADD Factor * 10m³/ha Stora 0 Inlet Coefficcie 0 Flow per Person per Day (I/per/da 0. 500 Run Time (min 0. 000 Output Interval (min	ow 20.000 ge 2.000 nt 0.800 y) 0.000 (s) 60 (s) 1
Synthet	ic Rainfall Details	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R	FSR Profile Type W 5 Cv (Summer) nd and Ireland Cv (Winter) 16.800 Storm Duration (mins) 0.329	inter 0.750 0.840 30
©19	82-2020 Innovyze	

Cronin & Sutton Con	sul ti ng	1			P	age 7				
1st Floor, 19-22 Dar	me Street									
Dublin										
DO2 N500, Ireland						<i>Aicro</i>				
Date 28/02/2024 11:4	49	Desi gne	d by Anto	ni o. Campel)rainarre				
FILE Storm PO3. MDX		Checked	by		-	nannage				
I nnovyze		Network	2020. 1. 3							
	Online Controls for Storm									
Depth/Flow Relatio	nship Manhole	e: SFUTUR	RE, DS/PN:	S1.001,	Volume (m ³): 3.3				
	Inve	rt Level (m) 77.409							
Depth (m) Flow (l/s)	Depth (m) Flow	w (l/s) De	epth (m) Fl	ow (l/s) De	pth (m) Fl	ow (1/s)				
0. 200 3. 2000	1.800	3, 2000	3.400	3, 2000	5.000	3. 2000				
0. 400 3. 2000	2.000	3. 2000	3.600	3. 2000	5.200	3. 2000				
0.600 3.2000	2.200	3. 2000	3.800	3. 2000	5.400	3. 2000				
0.800 3.2000	2.400	3.2000	4.000	3. 2000	5.600	3.2000				
1.000 3.2000	2.600	3.2000	4.200	3.2000	5.800	3.2000				
1 400 3 2000	2.800	3.2000	4.400	3.2000	0.000	3.2000				
1. 600 3. 2000	3. 200	3. 2000	4.800	3. 2000						
Hydro-Brake® Op	timum Manhole	e: S13, [DS/PN: S1.	012, Volu	ıme (m³):	12. 2				
	1151 +	Deference		(0.0700.700	0 0700					
	Desi c	n Head (mì	Ə MD-SHE-UI)	60-2700-700	7 000					
	Desi gn	Flow (I/s))		27.0					
	0	Flush-Flo	ÎM	Cal c	ul ated					
		Obj ecti ve	e Minimise	upstream s	torage					
	A	Application	n	S	urface					
	Sump) AVALLADI (motor (mm`	5		res 160					
	Invert	ineter (nin Level (m))		68 400					
Minimum	Outlet Pipe Dia	ameter (mm))		225					
Sugges	ted Manhole Dia	ameter (mm))		1800					
	Control Po	oints	Head (m)	Flow (l/s)						
[)esign Point (Ca	al cul ated)	7.000	27.0						
	[Flush-Flo™	0. 697	16. 2						
	lean Flow over H	Kick-Flo® Head Range	1.440	12. / 19. /						
, 		nead nange		17. –						
The hydrol ogi cal cal c	ulations have b	been based	on the Hea	d/Di scharge	rel ati ons	hip for the				
Hydro-Brake® Optimum	as specified.	Should an	other type	of control	device oth	er than a				
invalidated	be utilised the	en these s	torage rout	ing carcura	LIONS WITT	be				
invaridated										
Depth (m) Flow (l/s)	Depth (m) Flow	w (l/s) De	epth (m) Fl	ow (l/s) Dep	pth (m) Fl	ow (l/s)				
0. 100 5. 7	1. 200	14.9	3.000	18.0	7.000	27.0				
0. 200 12. 8	1.400	13. 2	3.500	19.4	7.500	27.9				
0.300 14.4	1.600	13.3	4.000	20.6	8.000	28.8				
0.400 15.4	1.800	14.1	4.500	21.8	8.500	29.6				
	2.000	14.8 15.5	5.000	23.0	9.000 9.500	30.5 31.3				
0.800 16.2	2.200	16.2	6, 000	25.1	7.000	31.3				
1. 000 15. 8	2.600	16.8	6. 500	26.0						
				·						
	©198	32-2020 I	nnovyze							
L			2							

Cronin & Sutton Consulting			Page 8							
1st Floor, 19-22 Dame Street										
Dublin										
D02 N500, TreLand	Deci and by Ant	ania Campalla	Micro							
Date 28/02/2024 II: 49 File Storm PO3 MDX	Checked by	oni o. campei i o	Drainage							
	Network 2020 1	3								
	NC (WOLK 2020, 1.	5								
Depth/Flow Relationship Manhole: SFUTURE, DS/PN: S3.001, Volume (m ³): 2.3										
l nver	t Level (m) 69.455)								
Depth (m) Flow (1/s) Depth (m) Flow	7 (1/s) Depth (m) H	Flow (l/s) Depth (m) Flow (l/s)							
0. 2003. 20001. 8000. 4003. 20002. 0000. 6003. 20002. 2000. 8003. 20002. 4001. 0003. 20002. 6001. 2003. 20002. 8001. 4003. 20003. 0001. 6003. 20003. 200	3. 2000 3. 400 3. 2000 3. 600 3. 2000 3. 800 3. 2000 4. 000 3. 2000 4. 200 3. 2000 4. 400 3. 2000 4. 600 3. 2000 4. 800	3. 2000 5. 0 3. 2000 5. 2 3. 2000 5. 4 3. 2000 5. 6 3. 2000 5. 8 3. 2000 5. 8 3. 2000 6. 0 3. 2000 3. 2000	00 3. 2000 00 3. 2000 00 3. 2000 00 3. 2000 00 3. 2000 00 3. 2000 00 3. 2000 00 3. 2000							
Hydro-Brake® Optimum Manhol	e: S23, DS/PN: S	S1.020, Volume	(m ³): 5.7							
Unit Desig Design Sump Dia Invert Minimum Outlet Pipe Dia Suggested Manhole Dia	Reference MD-SHE-(n Head (m) Flow (1/s) Flush-Flo™ Objective Minimis pplication Available meter (mm) Level (m) meter (mm)	0184-2290-2800-229 2.80 22. Cal cul ate se upstream storag Surfac Ye 18 62.59 22 180	0 9 d e s 4 0 5 0							
Control Po	ints Head (m)	Flow (l/s)								
Design Point (Ca F Mean Flow over F	Il cul ated) 2. 800 l ush-Fl o™ 0. 801 Ki ck-Fl o® 1. 645 lead Range -	22. 9 22. 6 17. 8 19. 9								
The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	een based on the He Should another type n these storage rou	ead/Di scharge rel a e of control devic uting calculations	tionship for the e other than a will be							
Depth (m) Flow (1/s) Depth (m) Flow	(1/s) Depth (m) H	Flow (l/s) Depth (m) Flow (l/s)							
0. 100 6. 5 1. 200 0. 200 16. 7 1. 400 0. 300 19.4 1. 600	21.8 3.000 20.6 3.500 18.5 4.000	23.7 25.5 27.2 8.0	00 35.6 00 36.8 00 37.9							
0. 400 20. 8 1. 800 0. 500 21. 8 2. 000 0. 600 22. 3 2. 200 0. 800 22. 6 2. 400	18.5 4.500 19.5 5.000 20.4 5.500 21.3 6.000	28. 7 30. 2 31. 7 33. 0	00 39.1 00 40.2 00 41.2							
1. 000 22. 4 2. 600 	22. 1 6. 500 22-2020 I nnovyze	34.3								

Cronin & Sutt	on Consultin	g				P	age 9			
Dublin	-22 Dame Sti	CCL								
D02 N500, Ire	l and						Aicro			
Date 28/02/20 File Storm PO	24 11:49 3 MDX		Desi gneo Checked	d by Anton by	io. Campe)rainage			
Innovyze Network 2020. 1. 3										
Hudro Br	ako® Ontimum	Manhol			006 Vol	umo (m3).	Б 1			
Hydro-Brake® Uptimum Mannole: 536, DS/PN: 54.006, Volume (m³): 5.1										
Ν	/inimum Outlet Suggested Mar	Unit Design Design A Sump Dian Invert Pipe Dian nhole Dian	Reference n Head (m) Flow (1/s) Flush-Flo" Objective pplicatior Available meter (mm) Level (m) meter (mm)	MD-SHE-010 Minimise	9-7900-260 Calc upstream s S	00-7900 2.600 7.9 cul ated storage Surface Yes 109 63.000 150 1200				
	Co	ontrol Po:	ints	Head (m) F]	.ow (l/s)					
	Design Mean Flo	Point (Ca F ow over H	Il cul ated) Tush-Fl o™ Ki ck-Fl o® lead Range	2. 600 0. 478 0. 974 -	7.9 6.3 5.0 6.1					
The hydrologic Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo	cal calculation Optimum as spec otimum® be util ow (1/s) Depth	ns have b cified. ised the (m) Flow	een based Should and n these st n (1/s) De	on the Head. other type o corage routi pth (m) Flow	/Discharge fcontrol ngcalcula (1/s)De	e relations device oth ations will epth (m) Fl	hip for the er than a be ow (1/s)			
0. 100 0. 200 0. 300 0. 400 0. 500 0. 600 0. 800 1. 000	3. 7 1. 5. 5 1. 6. 0 1. 6. 2 1. 6. 3 2. 5. 9 2. 5. 1 2.	200 400 800 200 400 600	5. 5 5. 9 6. 3 6. 6 7. 0 7. 3 7. 6 7. 9	3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	8. 4 9. 1 9. 7 10. 2 10. 8 11. 3 11. 7 12. 2	7.000 7.500 8.000 9.000 9.500	12. 6 13. 1 13. 5 13. 9 14. 2 14. 6			
		©198	32-2020 I	nnovvze						
		170	~ 2020 I	intovyze						

Cronin & Sutton Consulting		Page 10
1st Floor, 19-22 Dame Street		
Dubl i n		Le
D02 N500, Ireland		Mirro
Date 28/02/2024 11:49	Designed by Antonio.Campello	Drainage
File Storm PO3.MDX	Checked by	brainage
l nnovyze	Network 2020.1.3	
Storage	Structures for Storm	
Tank or Pond Ma	nhol e: SFUTURE, DS/PN: S1.001	
Inve	ert Level (m) 77.409	
Depth (m) An	rea (m ²) Depth (m) Area (m ²)	
0.000	250.0 1.200 250.0	
Tank or Pond I	Manhol e: S13, DS/PN: S1.012	
Inve	ert Level (m) 68.400	
Depth (m) Area (m ²) De	epth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 280.0	2.000 280.0 2.001 0.0	
Tank or Pond Ma	nhol e: SFUTURE, DS/PN: S3.001	
Inve	ert Level (m) 69.463	
Depth (m) An	rea (m ²) Depth (m) Area (m ²)	
0. 000	250.0 1.200 250.0	
Tank or Pond I	Manhol e: S23, DS/PN: S1.020	
Inve	ert Level (m) 62.590	
Depth (m) Area (m ²) De	epth (m) Area (m ²) Depth (m) Area (m ²)	
0. 000 270. 0	2. 000 270. 0 2. 001 0. 0	
Tank or Pond	Manhol e: S36, DS/PN: S4.006	
l nve	ert Level (m) 63.000	
Depth (m) Area (m ²) De	epth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 265.0	2.000 265.0 2.001 0.0	

©1982-2020 Innovyze

Cronin & Sutton Consulting				Pa	age 11				
1st Floor, 19-22 Dame Stree	et								
Dublin					Le m				
D02 N500, I rel and				N	licro				
Date 28/02/2024 11:49		rainade							
FILE STORM PU3. MDX	-	and the second second							
ΠΠΟνγΖΕ	NE	elwork 2020. I. 3							
Summary of Critical Results by Maximum Level (Rank 1) for Storm									
		5		,					
<u>Simulation Criteria</u> Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000 Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (I/per/day) 0.000 Foul Sewage per hectare (I/s) 0.000									
Number of Enput H Number of Onlin Number of Offlin	Hydrograph ne Control ne Control	ns O Number of Sto s 5 Number of Tim s O Number of Rea	rage Structu e/Area Diagr I Time Contr	ures 5 rams 0 rols 0					
	<u>Syntheti</u> c	<u>c Rainfall Deta</u> ils							
Rainfall Mode Regio M5-60 (mm	n Scotland)	FSR d and Ireland Cv (16.800 Cv (Ratio R 0.3 Summer) 0.7 Winter) 0.8	329 750 340					
Margin for Flood Ri	sk Warning	a (mm)		300. 0					
An	alysis Tim	nestep 2.5 Second	Increment (E	Extended)					
	DTS S DVD S	Status Status		ON ON					
	Inertia S	Status		ON					
Profile Duration(s) (mi	(s) ns) 15	5, 30, 60, 120, 18 720, 960, 1440, 2	Summer D, 240, 360, 160, 2880, 4	and Winter 480, 600, 4320, 5760,					
Return Period(s) (yea Climate Change	rs) (%)		7200, 8	3640, 10080 100 0))				
US/MH Re PN Name Storm Pe:	turn Clima riod Chang	ate First (X) ge Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.				
S1.000 SFUTURE 15 Winter	100 +	+0% 100/15 Summer							
S1.001 SFUTURE 600 Winter S1.002 S1 15 Winter	100 +	⊦0% 100/15 Summer ⊧0%							
S1. 002 S1 15 Winter	100 +	+0%							
S1.004 S3 15 Winter	100 +	⊦0% 100/15 Winter							
S1.005 S4 15 Winter	100 +	+0% 100/15 Summer							
S1.000 S5 I5 WINTER S1.007 S6 15 Winter	100 +	⊧u% IUU/I5 SUMMer ⊧N%							
S2.000 S7 360 Winter	100 +	+0%							
S2.001 S8 360 Winter	100 +	+0% 100/240 Winter							
S1.008 S9 360 Winter	100 +	+0% 100/15 Winter							
S1.009 S10 360 Winter	100 +	+0% 100/15 Summer ⊾0% 100/15 Summer							
S1. 011 S12 360 Winter	100 +	+0% 100/15 Summer							
S1.012 S13 360 Winter	100 +	⊧0% 100/15 Summer							
S1.013 S14 15 Winter	100 +	0% 100/15 Summor							
I S1.014 S15 15 Winter	100	FO% TOO/TO Summer							
S1 015 S16 15 Winter	100 +	+0% 100/15 Summer +0% 100/15 Summer							

Cronin & Sutton Consulting		Page 12
1st Floor, 19-22 Dame Street		
Dublin		
DO2 N500, Ireland		Micro
Date 28/02/2024 11:49	Designed by Antonio.Campello	Desinado
File Storm PO3.MDX	Checked by	Dialitage
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status
S1. 000	SFUTURE	78.638	0. 838	0. 000	3. 15			198. 0	SURCHARGED
S1. 001	SFUTURE	78.300	0. 591	0.000	0. 02			3.2	SURCHARGED
S1. 002	S1	76.086	0.000	0.000	0. 98			114.6	OK
S1. 003	S2	75.877	-0.005	0.000	1.00			148.1	OK
S1. 004	S3	75.744	0. 012	0.000	0.69			221.0	SURCHARGED
S1. 005	S4	75. 294	0. 506	0. 000	1.30			250.3	SURCHARGED
S1. 006	S5	74.882	0. 337	0. 000	1.43			288. 1	SURCHARGED
S1. 007	S6	74.131	-0.094	0.000	0.88			392.7	OK
S2.000	S7	72.436	-0.014	0.000	0. 03			8.4	OK
S2. 001	S8	72.435	0. 302	0.000	0.10			26.4	SURCHARGED
S1. 008	S9	72.433	0. 483	0.000	0.14			97.4	SURCHARGED
S1.009	S10	72.427	1. 324	0.000	0. 18			106.8	SURCHARGED
S1. 010	S11	72.423	1.658	0.000	0.31			106.8	SURCHARGED
S1. 011	S12	72.421	1.754	0.000	0.26			106.8	SURCHARGED
S1.012	S13	72.417	3.717	0.000	0.14			20.7	SURCHARGED
S1.013	S14	68. 923	0.549	0.000	0.50			60.5	SURCHARGED
S1. 014	S15	68. 788	0. 802	0.000	1. 27			90.8	SURCHARGED
S1. 015	S16	68. 531	0. 695	0.000	1. 67			118.7	SURCHARGED

PN	US/MH Name	Level Exceeded
S1. 000 S1. 001 S1. 002 S1. 003 S1. 004 S1. 005 S1. 006 S1. 007 S2. 000 S2. 001 S1. 008 S1. 009 S1. 010 S1. 011 S1. 012 S1. 013 S1. 014 S1. 015	SFUTURE SFUTURE S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16	

©1982-2020 Innovyze

Cronin & Sutton Consulting		Page 13
1st Floor, 19-22 Dame Street		
Dublin		Le .
DO2 N5OO, Ireland		Micro
Date 28/02/2024 11:49	Designed by Antonio. Campello	Dcainago
File Storm PO3.MDX	Checked by	Dialitage
Innovyze	Network 2020.1.3	1

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow
PN	Name	Stor	rm	Period	Change	Surch	arge	Flood	Overflow	Act.
S1. 016	S17	15 Wi	nter	100	+0%	100/15	Summer			
S3. 000	SFUTURE	15 Wi	nter	100	+0%	100/15	Summer			
S3. 001	SFUTURE	600 Wi	nter	100	+0%	100/15	Summer			
S3. 002	S18	30 Su	mmer	100	+0%					
S3. 003	S19	15 Wi	nter	100	+0%					
S1. 017	S20	15 Wi	nter	100	+0%					
S1. 018	S21	720 Wi	nter	100	+0%	100/15	Summer			
S1. 019	S22	720 Wi	nter	100	+0%	100/15	Winter			
S1. 020	S23	720 Wi	nter	100	+0%	100/15	Summer			
S1. 021	S24	960 Su	Immer	100	+0%	100/180	Summer			
S4.000	S25	15 Wi	nter	100	+0%					
S5.000	S31	15 Wi	nter	100	+0%	100/15	Summer			
S4. 001	S30	15 Wi	nter	100	+0%	100/15	Summer			
S6. 000	S26	15 Wi	nter	100	+0%	100/15	Winter			
S4. 002	S27	15 Wi	nter	100	+0%					
S4. 003	S28	15 Wi	nter	100	+0%	100/15	Summer			
S4. 004	S29	600 Wi	nter	100	+0%	100/15	Summer			
S7.000	S30	15 Wi	nter	100	+0%					
S8. 000	S31	15 Wi	nter	100	+0%	100/15	Summer			
S7. 001	S32	15 Wi	nter	100	+0%					
S7. 002	S33	15 Wi	nter	100	+0%	100/15	Summer			
S7.003	S34	15 Wi	nter	100	+0%	100/15	Summer			
S4. 005	S35	600 Wi	nter	100	+0%	100/15	Summer			
S4. 006	S36	600 Wi	nter	100	+0%	100/15	Summer			
S4. 007	S37	600 Wi	nter	100	+0%					
S4. 008	S38	600 Wi	nter	100	+0%					
S4. 009	S39	600 Wi	nter	100	+0%					

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
S1. 016	S17	68. 089	0.405	0. 000	1.67			146. 0	SURCHARGED
S3. 000	SFUTURE	70.420	0. 620	0.000	3.41			204.6	SURCHARGED
S3. 001	SFUTURE	70.333	0. 578	0.000	0.06			3. 2	SURCHARGED
S3. 002	S18	69.471	-0.251	0.000	0.05			3.3	OK
S3. 003	S19	69.450	-0.209	0.000	0.20			55.6	OK
S1. 017	S20	67.375	-0.159	0.000	0.60			298. 1	OK
S1. 018	S21	64.325	0. 788	0.000	0.56			47.1	SURCHARGED
S1. 019	S22	64.320	0. 810	0.000	0.16			46.8	SURCHARGED
S1. 020	S23	64.311	1.496	0.000	0.30			22.6	SURCHARGED
S1. 021	S24	62. 525	0. 000	0.000	1. 08			22. 8	SURCHARGED
S4. 000	S25	70. 787	-0.084	0.000	0.71			78.2	OK
S5. 000	S31	69.553	0. 428	0.000	0.45			22.7	SURCHARGED
S4. 001	S30	69. 515	0. 644	0.000	1.17			131.3	SURCHARGED
S6. 000	S26	72. 789	0. 099	0.000	1.01			117.4	SURCHARGED
S4. 002	S27	67.263	-0. 162	0.000	0.61			286. 1	OK
S4. 003	S28	65.869	0. 244	0. 000	1. 02			282. 2	SURCHARGED
			© ⁻	982-202	20 Inn	ovyze			

Cronin & Sutton Consulting		Page 14
1st Floor, 19-22 Dame Street		
Dubl i n		
DO2 N500, Ireland		Micro
Date 28/02/2024 11:49	Designed by Antonio. Campello	Desinado
File Storm PO3.MDX	Checked by	Diamage
l nnovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Water	Surcharged	Flooded			Half Drain	Pipe	
	US/MH	Level	Depth	Volume	Flow /	Overflow	Time	Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status
S4. 004	S29	65.771	1.461	0.000	0. 08			37.3	FLOOD RISK
S7.000	S30	69. 929	-0.164	0.000	0. 16			18.8	OK
S8. 000	S31	69.103	0. 078	0.000	1.34			49.7	SURCHARGED
S7.001	S32	68. 918	-0.007	0.000	0.90			88.0	OK
S7.002	S33	68.372	0. 177	0. 000	1.13			86.8	SURCHARGED
S7.003	S34	68.013	0. 313	0.000	0.95			133.7	SURCHARGED
S4.005	S35	65.769	2. 176	0.000	0.25			52.4	SURCHARGED
S4.006	S36	65.768	2. 543	0.000	0.29			8.0	SURCHARGED
S4.007	S37	63.056	-0.149	0.000	0.25			8.0	OK
S4. 008	S38	62.879	-0. 188	0.000	0.06			8.0	OK
S4.009	S39	59. 283	-0.142	0.000	0. 29			8.0	OK

		US/MH	Level			
	PN	Name	Exceeded			
S	1.016	S17				
S	3.000	SFUTURE				
S	3. 001	SFUTURE				
S	3.002	S18				
S	3.003	S19				
S	1.017	S20				
5	1.018	521				
c S	1.019	522				
S	1.020	S24				
S	4.000	S25				
S	5.000	S31				
S	4. 001	S30				
S	6.000	S26				
S	4.002	S27				
S	4. 003	S28				
S	4.004	S29				
S	7.000	S30				
S	8.000	531				
S 2	7.001	532				
د ۲	7.002	537				
S	4 005	S35				
S	4. 006	S36				
S	4.007	S37				
S	4. 008	S38				
S	4.009	S39				
	1000	2020 1				
C	©1982-2020 Innovyze					